Introduction to Game Theory

Main content

Spring Semester 2017

This is the website for the course entitled "Introduction to Game Theory" which commences in the spring semester of 2017. The lectures take place every Monday from 17.15 to 18.45 pm in room HG F1. Course material for students will be published below. More detailed information about the course may be found here.


This course introduces the foundations of game theory. It treats models of social interaction, conflict and cooperation, the origin of cooperation, and concepts of strategic decision making behavior. Examples, applications, and the contrast between theory and empirical results are particularly emphasized.
Lecturers: H. Nax , B. Pradelski

About Game Theory:

Game theory provides a unified language to study interactions amongst different types of individuals (e.g. humans, firms, nations, animals, etc.). It is often used to analyze situations involving conflict and/or cooperation. The course introduces the basic concepts of both non-cooperative and cooperative game theory (players, strategies, coalitions, rules of games, utilities, etc.) and explains the most prominent game-theoretic solution concepts (Nash equilibrium, sub-game perfection, Core, Shapley Value, etc.). We will also discuss standard extensions (repeated games, incomplete information, evolutionary game theory, signal games, etc.).

In each part of the course, we focus on examples and on selected applications of the theory in different areas. These include analyses of cooperation, social interaction, of institutions and norms, social dilemmas and reciprocity as well as applications on strategic behavior in politics and between countries and companies, the impact of reciprocity, in the labor market, and some applications from biology. Game theory is also applied to control-theoretic problems of transport planning and computer science.

As we present theory and applications, we will also discuss how experimental and other empirical studies have shown that human behavior in the real world often does not meet the strict requirements of rationality from "standard theory", leading us to models of "behavioural" and "experimental" game theory.


Course material is intended for personal use in the context of this course only; redistributing, citing or publishing any of the material is strictly prohibited. If prompted, please enter your ETH username and password to download course materials.

Schedule and Course Material

Date Presenter Lecture Reading/problem set
20.02. Heinrich Nax Introduction: a quick tour of game theory College Admissions and the Stability of Marriage
D. Gale and L. S. Shapley
27.02. Heinrich Nax

Cooperative game theory

  • Core and Shapley value


R. Serrano
06.03. Bary Pradelski Non-cooperative game theory: Normal form
  • Utilities
  • Best replies


Preferences and utilities
13.03. Bary Pradelski

The Nash equilibrium:

  • Proof
  • Interpretations and refinements


Non-cooperative games
J. F. Nash
20.03. Bary Pradelski Non-cooperative game theory: dynamics
  • Sub-game perfection and Bayes-Nash equilibrium
  • Repeated games


27.03. Bary Pradelski

Game theory: evolution

  • Evolutionary game theory
  • Algorithms in computer science (Price of anarchy)
03.04. Heinrich Nax Experimental game theory:
  • Observing human behavior/experiments
  • Behavioral game theory
10.04. Heinrich Nax Applications:
  • Interactive Environments and Distributed Control
08.05. Heinrich Nax Bargaining
  • Solution concepts
  • Nash program
15.05. Bary Pradelski


  • English, Dutch, Sealed, Open
  • Equivalence and Real-world examples: 3G, Google, etc.
22.05.   EXAM  
29.05. H. Peyton Young The diffusion of social and technological innovations  
Page URL:
Wed Mar 22 21:20:37 CET 2017
© 2017 Eidgenössische Technische Hochschule Zürich